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7%, respectively. Bartholomew and Gunye,10 who have 
reported values of the spins for the same levels we have 
studied in Ni59, agree with our assignments for the levels 
at 0.470 and 0.870 MeV, but disagree in assigning the 
spin / = § to the level at 1.31 MeV. However, the dis
agreement is not as large as might be inferred from these 
different assignments, since the measured correlations11 

from which these spins are deduced are the same within 
the statistical errors. 

DISCUSSION 

The levels in Fe55, Ni69, and Ni61 studied in this ex
periment all fall within the gross structure in the (d,p) 
spectrum which was interpreted earlier as the 2 ^ / 2 

single-particle neutron state. The results of the present 
experiment indicate strongly that the first excited p 
state in all of these nuclides does, in fact have J=h 
inconsistent with the earlier interpretation. In Ni63 

our results indicate / = § and J=\ states so close to 
each other in excitation that they would earlier have 
been interpreted as part of the same gross-structure 
group. In fact, a low-lying py2, pi/2 doublet at very low 
excitation seems to be characteristic of all the odd-
neutron nuclei in this mass range. This has been dis
cussed in more detail in an earlier note.12 

10 G. A. Bartholomew and M. R. Gunye, Bull. Am. Phys. Soc. 8, 
367 (1963). 

11 G. A. Bartholomew (private communication). 
12 L. L. Lee, Jr., J. P. Schiffer, and D. S. Gemmell, Phys. Rev. 

Letters 10, 496 (1963). 

I. INTRODUCTION 

APPROXIMATE expressions for the asymmetry in 
the distribution of photons in bremsstrahlung 

production from polarized electrons have been devel
oped by the authors and others.1,2 The numerical re
sults of these calculations indicate the asymmetry to 
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1 W. R. Johnson and J. D. Rozics, Phys. Rev. 128, 192 (1962), 
2 E . S. Sobolak and P. Stehle, Phys. Rev, 129, 403 (1963), 

I t is then apparent that there is considerable mixing of 
spins within the (d,p) gross structure, at least for the 
1=1 groups. Each ^-wave gross-structure peak contains 
states with both p%/2 and pi/2 strength and the simple 
interpretation advanced earlier1 is not correct. I t is dis
appointing that the simple and naive interpretation is 
not the correct one. However, it is now possible, with 
the aid of fast computers, to calculate the details 
of the fine structure for particularly favorable cases. A 
recent calculation by Ramavataram,13 for instance, pre
dicts our value of J=\ for the 413-keV first excited 
state of Fe55. The calculation does not, however, pro
duce the correct spins for some of the higher excited 
states which are populated strongly in the (d,p) re
action.14 Better success was achieved for Cr53, where the 
calculation did remarkably well in fitting the known 
spins for a number of levels. 

There remains, however, the question of what inter
action is responsible for the experimentally observed 
splitting of the p-w&ve gross-structure peaks. I t is 
evidently not the spin-orbit force, which had been sug
gested earlier. Nor is it apparently an isotopic-spin 
splitting, which should not affect the results of (d,p) 
reaction.15 I t will be interesting to see if more sophisti
cated nuclear-structure calculations can reproduce these 
unexplained effects. 

13 K. Ramavataram, Phys. Rev. 132, 2255 (1963). 
14 D. S. Gemmell, L. L. Lee, Jr., A. Marinov, and J. P. Schiffer, 

Bull. Am. Phys. Soc. 8, 523 (1963). 
15 J. B. French and M. H. Macfarlane, Nucl. Phys. 26, 168 

(1961). 

be a maximum for an incident electron energy W\ 
= 1.25m and for a photon energy & = 0.75(JFi—m). At 
these energies the validity of the Born approximation is 
doubtful since aZWi/pi for the incident electron is of 
order one for gold. For this reason a more detailed 
analysis of the asymmetry seems desirable. Using a 
method similar to that used by Jaeger and Hulme, one 
can compute this asymmetry exactly.3 

An exact calculation of the differential cross section 

3 J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. (London) 
A138, 708 (1935). 
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The production of bremsstrahlung by the interaction of polarized electrons with the Coulomb field 
of a nucleus is considered. An exact calculation of the angular distribution of the outgoing photons, and the 
azimuthal asymmetry in this distribution is presented. Numerical calculations were done for an incident 
electron energy Wi = 1.25m, a photon energy & = 0.75 (Wi—m), and a nuclear charge Ze = 19e. 
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for the production of unpolarized bremsstrahlung from fK
(i'0)(pr) and gK

{ifi)(Pr) are the radial parts of the 
polarized electrons, summed over the spins and inte- wave function normalized so that asymptotically the 
grated over the angles of the outgoing electron; and of wave function looks like a plane wave plus an incoming 
the azimuthal asymmetry in the photon distribution, is or outgoing spherical wave.5 

presented here. The wave function used was the Darwin The numerical results of this calculation indicate the 
series solution of the Dirac equation for an electron in absolute value of the asymmetry to be a maximum at 
the Coulomb field of a nucleus, given by about 70° and 150°. 

^ , 0 )(P,r , f ) = 47ri; PKm(p£)[ J, II. CALCULATION OF THE CROSS SECTION 
\ gKW(pr)ti-Km(f)/ 

The cross section for this process is given by 
where p is the linear momentum of the electron and f 
is a unit vector in the direction of the electron's spin. 7Q

 a ^ i 
dia — f 

PKm(Pj) = ti*mHp)v, ( 2 7 r ) 4 PX « J «• ' 

< ? * • = p2W2kdkdQkj: dtiP2'Z\M\2, ?/« 
where v is the "large component" of the Dirac plane where 
wave spinor. 

G*M=Z C{l\j;ix-m, m)Yi,^m(f)Xm, 
M= /'jr*«t(p2,r,C2)«-Ee-<k-r^<0)(Pi,r,Ci), 

, . , , where the subscript 1 refers to the incident electron, 
where C{abc; mamb) is the Clebsch-Gordan coefficient, 2 tQ t h e final d e c t K m . k i s t h e m o m e n t u m 0f the out-
F;,m are the spherical harmonics, and X™ are the two b ^ a n d e i s i t s p o l a r i z a t i o n v e c tor. Substi-
component Pauh s p i n o r tuting for the * 's and writing 

j , /, and / are determined from K in the following way: 

* I ^ I J J & 2 y l,m 

l-~ 
K<0' ' where jz(&r) is the spherical Bessel function of order I, 

k , K> 0 J | M |2 is then given by 

|M|2=(4TT)6 E E E P W ( £ l , f l ) i W ( £ l , f ^ 
Ki,mi,K2.W2,Z,m Ki,mi,K2,ni2,l,m 

X{A 
KimiK2m2lmJL K\K2l A.—KI.WI,—K2,m2,l,fn^ Kl*2U X \ ^ Kim\K2fn2lm^ K\K2L *** —KI , ra i ,—i^j^ . I .m*' K I ^ I I j 

where 
rK1K2*= fr'dri'-ljl(kr)gK2^(p2r)fK1^(p1r) 

and 

and 

A KimiK2m2lm==z I d**T*l,m v / « ' — K2»»2 ° r # £*"Kimi • 

Writing <r and E in a spherical basis and making use of the Wigner-Eckart theorem, A KimiK2m2im can be written,6 

/3Z0UW* 

\ 4xpi] 

X 2ZC(/i§ii; f»i—MI, ndCih'ijz; j»g—AH—X, A*I+X)C($1£; AH, \)C(lh'h; w, w2—AH—X)5xim+m2-mi, 

CQh'h; CO)* m-\-m2—mi 

"7i] / 

with [# ]=2a+ l . After summing over spins ?2, integrating over the angles of p2, and summing over e, one is then 
able to carry out the sums over R2, m2, m, and m. Introducing the spin projection operator for the incident electron, 

4 The angular momentum coupling coefficients and the spherical harmonics used in this paper are those defined in M. E. Rose, 
Elementary Theory of Angular Momentum (John Wiley & Sons, Inc., New York, 1957). 

5 See, for example, W. R. Johnson and R. T. Deck, J. Math. Phys. 3, 319 (1962). 
6 See Ref. 4, p. 85. 
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the sums over m\ and m\ can also be done. The resulting expression is given by 

E fd2P2Z\M\2 = j:ALPL(cose)+ii'tif:BLPL,i(cosd), 
t J T2 L=0 L = l 

where 
4L=192(2ir)« £ E ^ i W / j Q P i r o ^ }, 

and 

BL=i92(27r)^(-^-V2 E E*.*.«iracric/i]iftcyift(-i)Wi 

\ L ( L + 1 ) / K1K2J?1 j j 
XCQ1l1L',00)X(jlLj1; lxLh\%\\) £ I W ^ " ^ }, 

/? 
with 

2 ,* ltAz7 /7L=§«//[/]C(/ZL;00)^(Z/i1/; J/i)HV5C(112; 00)[/l[/]JFtf/221; 1/) E i ' [L']1/2C(/fc'; 00) 

XC(L'2L; 00)X(2LL'; fjj; / j J ) 
and 

| | U K\K2KlK2ll * K\K<Lll KIKll \ ^ ~ K\ , — K2,~ «1— K2̂ Z ^ «1 * 2 ^ ' K1«2Z D K\K2—Kl—K2ll -* K\ K2.W K\ K2l D—Kl—K^KlKlll J K\ K^ K\ K^l 

with 

DK1K2-Kl-K2u"=ih'JtolU'ywQWM; hf)W(lU'jii; li~fW(\hfti; i/a) w ( i i A ' ; ii2)C(//27i;oo)c(H2?i;00) 
0 is the angle between pi and k, and $ = k X p i / | k X p i | . Pz,m(cos0) are the associated Legendre polynomials. 
W(abcd; ef) is the Racah coefficient and Xiabc; def; ghi) is the 9-j symbol. 

Substituting this expression into the differential cross section one obtains 

a W\ oo oo 
d*<r = PiWikdkdQki Z ALPL(cosd) + ^'ti E BLPL,I(COS6)} . 

( 2 T ) 4 pi L=Q L=l 

The asymmetry function P(6) is given by 

P(e) = -n-tii:BLPL,i(cose)/ZALPL(cose). 

If one integrates over the angles of k, then the cross section differential in photon energy only is given by 
4xa Wi 

da = —p2W2kdkA o. 
(2TT)4 px 

III. THE RADIAL INTEGRALS 

Following a procedure similar to that used by Jaeger and Hulme, one can express the radial integrals IK1K2i and 
JK1K2i in terms of the FA functions which are generalized hypergeometric functions of three complex variables.3'7 

Since these integrals are not absolutely convergent, it was necessary to introduce a factor of e~Xr in the integrand 
and then take the limit as X went to zero. The integrals are given by: 

Wi+m\ll2/W2-m\112 ^i+-/2+(,i+,2)W2 r ( a i - l ) r ( a 2 - l ) r ( a 8 ) r ( d ) / W i+m\ vu( W2—mY 

\ 2W! ) \ 2W2 / &Pip2k r(6i)r(j2)r(j8) 

Xa^:y™2z+H(7i-M)[fo 

^ i - w \ 1 / 2 / T F 2 + ^ \ 1 / 2 ^i+-/2+(v1 + ,2)W2r(ai-l)r(a2-l)r(a3)r(J) /Wi—m\lu/W2+m\ 

\ 2TFi / \ 2W2 ) 2 / spipnk r(fti)r(j2)r(j8) 

7 P. Appell, Fonctions hypergeometriques et hyperspheriques-polynomes d'hermite (Gauthier-Villars, Paris, 1926), p. 114. 



E X A C T C A L C U L A T I O N O F B R E M S S T R A H L U N G B59 

with 

where 

A = FA(d; ah a2, as;bi, b2, b-6; %, y, z), 

B = FA(d;ah a2—l, az; bh b2, bz;x,y, z), 

C=FA(d; a±— 1, a2, a3; bh b2, h]x, y, z), 

D=FA(d; ai— 1, a2— 1, a3; fa, b2, fa;x, y, z), 

b1 = 2y1+l, b2 = 2y2+l, h = 2l+2, y^{k?-c?Z*yt\ 

« i = 7 i + l — in, a2=72+l—iv2, a 3 = / + l , 

2^i 2p2 2k 

pi+p2+k+i\ pi+p2+k+i\ pi+p2+k+i\ 

Vi = aZWi/pi, *>/ = aZM/pi. 

Since |#| > 1 , it was necessary to analytically continue FA- The series used to evaluate FA is as follows: 

FA {d; ai,a2,a3; bhb2,bz; a;,y,z) 

oo (d,2u)(z/2)2u \Y{fa)Y{al-d-2u) IT™(*+*«) <*> (^+2«, s)(l-fa+d+2u, s) 
=rd(i-:v/r)*-0'L- — — 7 - — T — :—: £-^ ( a 3 + i «)(1,«) l r(ai)r(6i-rf-2«) £d+2M *-o (l-ai+d+2u, s)(l,s)xs 

- (ft2+J,0(*2-fl2,0 r(Ji)r(d+2«-fli)er*"i - (ai ,*)( l -M-ai , j ) 1 

« (M(U) r(rf+2«)r(fti-ai) »«i «-o(l-rf--2«+ai, j)(V) ^s 

with 

oo (b2+s—d—2u,t)(b2—a2,t) ) 
X L yl 

w (62,0(1,0 J 

2#i 

p\—p2-\-i\ 
y=-

2p2 

pi+p2+i\ pi—p2+i\ 
-, f = -

^1 + ^2 + iX 

^1 + ^2+^ + ̂X 

and (a,6) = r(#+6)/T(V). This series converges for an incident energy Wi= 1.25m, for a photon energy 
| x | > l , \y\ <1, and | s / 2 | < l . * = 0.75(l^i-w), and for Z=79. From the numerical 

results for the radial integrals the sums over ku k2, and 
IV. NUMERICAL RESULTS 7 ^ • , J . z, i n / A J I i AH ^ 

/ were terminated at £i=10, k2 = o, and / = 3. All other 
The formula for d3a was programmed for the Uni- parameters were determined in terms of these through 

versity of Notre Dame's UNIVAC-1107 Computer for the selection rules contained in the angular momentum 

FIG. 1. Spin-inde
pendent part of the 
bremsstrahlung cross 
section for W\ — 1.25 
m, 6 = 0.75 (Wi-m), 
and Z = 79, where 6 
is the angle between 
pi and k. 

FIG. 2. Spin-de
pendent part of the 
bremsstrahlung cross 
section. 
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coupling coefficients. The series in Legendre poly
nomials was terminated at L=8. 

Expressing 

(Par=4TIT O V Z 3 (dk/k)dQK(I (6)+fi • f XD (0)) 

and P(6) = it^iS(6) where r0 is the classical electron 
radius, 1(0), D(0), and S(6) are shown in Figs. 1, 2, 
and 3. Writing 

da=47rr{?a2Z*(dk/k)ao, 

one found a0=2.14. 
Comparing the results shown in Fig. 3 for the asym

metry with those given in the earlier paper, one finds 
that the Born approximation can give order of magni
tude results but not the detailed shape of the curve.1 

This is not surprising since the previous work was the 
lowest order contribution from an expansion in powers 
of vi, and here z>i=0.96. 

V. SPECIAL CASES 

Because of its complexity, two checks were made on 
the expression for the differential cross section. The 
first case considered was that of using a plane wave as 
the wave function for the incident electron. The wave 
function for the outgoing electron was taken to be the 
limit of the exact wave function as p2 went to zero, 
neglecting terms of order a2Z2. 

For this case, since one is neglecting terms of order 
a2Z2 in the outgoing wave function, only K2= — 1 con
tributes, and the radial integrals reduce to the following: 

aZB*/W!+m\ll2 

2p1
2k\ 2Wi ) 

JK,-U— -
aZB^/Wx-m y. w v l / 2 

r ) 8 &h',l8i, 

where 

G i = -
2! 

l r 

2 ^ 2 \ 2Wi 

m n 
lQi(Wl/pl)+-Ql'(W1/pl) , 

pi J 

6h (l+l)Qi(W1/p1)-~Q/(W1/p1)~], 
pi J 

m 
Si-—Qi'QVi/pi), 

Pi 

with B*= (2irmaZ/p2y
i2edTi/i+il'2-i^ lnv* and the Qt(x) 

are the Legendre functions of the second kind with 
\x\ > 1 , and Qi(x)= (d/dx)Ql(x).s Integrating over the 
angles of k and summing over all remaining indices 

8 See, for example, W. Magnus and F. Oberhettinger, Formulas 
and Theorems for the Functions of Mathematical Physics (Chelsea 
Publishing Company, New York, 1954), p. 55. 

FIG. 3. Azimuthal 
asymmetry in the 
bremsstrahlung dis
tribution. 

except /, one obtains: 

dk 2m4 

Pi 

2(/+l) 

dk Zfft { 
da = 4wro2a2Z* £ ( 2 / + l ) ^ 2 + / e * 2 + ( / + l ) ( B j 2 

k pizk i [ 

: [ ( H - l ) 5 H - ( / + 2 ) ^ 2 ] ( B i 
(21+3) 

21 

( 2 / - 1 ) 
USi+(i-i)di-2~l®i 

Using the formulas for summing Qfs, one can carry out 
this / sum analytically, and the resulting expression 
agrees with that obtained by a direct calculation for 
this case. This case was also checked numerically, thus 
guaranteeing the computer program for the computa
tion of A L-

Since the Qi(x) functions have a singularity at x= 1, 
the series representation will not converge for the rela-
tivistic case. This method is thus suitable only to the 
lower energy region, and in particular it is well suited 
to the calculation of asymmetries. 

The second case considered was that of using a dis
torted plane wave as the wave function of the incident 
electron with the same outgoing wave function as that 
used for the preceding case. Again only K 2 = — 1 con
tributed. The angular distribution was numerically 
computed for the spin-dependent and spin-independent 
parts of the cross section and compared with the results 
from a direct calculation of this case, and both agreed. 
This case served as a check on the numerical computa
tion of BL. In both of these cases the sum over ki, was 
terminated at ki= 10. 
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